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ABSTRACT 
The studied system is an irrigation canal with hidromechanic 
AMIL gates. This gate is used in order to control (proportional 
controler) a local upstream water level [I] [2]. These gates are 
associated with an unpstream water distribution method. The 
stability study was conducted as follows: first) on a coupled 
canal pool - AMIL gate, such a system was named subsystem, 
and second) on two coupled subsystems. A type turnout 
perturbation is supossed to be in the upstream side close to the 
gate. 
The dimensionless S Vcnnnt [3] equations are linearized 
around a normal steady flow. Two dimensionless numbers are 
Important: the Froude number and the dimensionless length. 
By Laplace transform, a feasible system is established. By 
integration, the distributed parameter system was obtained. It 
represents the canal pool dynamics [4]. The dynamics of the 
AWL gate is supossed as succesion of steady states [S]. The 
Interested transcendent transfer function is established by 
coupling the pool dynamics representation and the linearized 
discharge equation of AMIL gate. 

The stability study consists in determining the analicity of the 
different transcendent input-output transfer in the Right Half 
Plan (RHP) [6] [7]. The resulting stability condition depends 
on the dimensionless numbers and the linearization parameters 
of the discharge equation. 
. In the first case, it was established a sufficient and 

necessary condition, so that, the coupled canal pool-AMIL 
gate is inconditionally stable. 

. In the second case, it was established a sufficient 
condition. Thus this condition has been evaluated by using 
different geometric and hydraulic characteristics for 
trapecial test canal [4]. This was retained: I) the instability 
problems become from the interaction of the hydraulic 
information contained in both subsystems and that 2) this 
Interaction is Important when the wave celerity is high. 

As a result, we propose an easy-use stability sufficient 
condition for coupled subsystems. A general method was used 
in order to study the wave motion stability for simple and 
coupled subsystems. This method can be directly applied when 
studying the stability problems of all canal pool - motorized 
hidraulic structure (controler) system. Obtained conditions can 
be used like design norms of irrigation canals. 

Keywords : regulation methods, hydraulics, mechanic 
equations, signal, automatica. 

1. INTRODUCTION 
ln Irrigation Districts where water distribution is by gravity 
two aspects are present: i) the transfer of a water volume in a 
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given instant and ii) the precision of water deliveries (takeoffs) 
in turnouts. First, the dynamics of this transfer is characterized 
by a long time delay, which is a function of the distance 
between water sources and turnouts. A canal pool IS the piece 
of canal separated by two AMILs. Canal pools react as buffer 
reservoirs to reply quickly discharge and water perturbations In 
turnouts. In the other hand, the precision of I he water 
distribution in turnouts depends on maintaining E constant 
water level in each turnout. To illustrate this problem, we 
consider a principal canal used to transfer a discharge with an 
upstream local control. Turnouts are located at the upstream of 

Dam 1 

Cushion-spring system PL,:Lolerolflow 1 
Figure I. Elements of N upstream )) regulation 

the gate in an upstream local control [S]. See-Figure 1 
AMILs maintain the upstream water level quasi-constant (a 
float is placed at the upstream of the gate) and these gates are 
widely used in irrigation canal nets because they improve 
strongly the water distribution. Furthermore, they are robust 
and well-adapted to countries where energy econssmy is a 
priority and to places where power energy is not available. 

This study has been done in collaboration with CEMAGREF 
(Public Water Research Institute: Irrigation Di\ ision) at 
Montpellier, France. The principal objectives are: ii to study 
the stability of coupled canal pool - AMIL systems and ii) to 
deduce norms of canal design in presence of AMILs. This 
model can also be inserted in a hydraulics model package for 
surface flow. The AMIL dynamics is first established and after 
that one of the canal pool. 

2. DYNAMIC OF AMZL GATES 
Geometrically, AWLS are radial gates of trapezoidal section. 
An upstream toroid float is joined to cylindrical gate-leaf. 
Elements, such as dash-pot, introduce friction into the system 
and are used to improve the gate stability. For AMILs. a spring- 
cushion mechanism is fixed between a gate arm and L; stand-by 
bar (see Figure 2). Forces acting on the system (used for 
computing the torques with respect to the gate axis) ,-Ire: i) the 
proper gate weight and the counterweights and ii) hydrostatic 
force acting on the surface of toroid float. The gate-leaf surface 
is cylindrical, the result of hydrostatic forces passes throughout 
axis and its torque vanishes [9]. 



Notation : a opening angle of the gate, a,, opening angle 
associated to a water controlled level at the axis height z,=O 
defined by the relation z,,/z,-=-sin(a,)/sin((a--a,), z,,,, 
water level with respect to the axis (associated with a maximal 

urii*;“‘. :*i.&~ .i 1,:: l H  + :;.+ .(I, * .,! *:: 

Figure 2 AMIL gate 

opening), z,,, water level with respect to the axis (associated 
with a closed gate), p water density, amax maximal opening 
angle, g gravity, z, upstream water level, Bz--z,,,,, x shock 
absorber guide, xb and yb point of coordinates where the shock 
absorber is fixed, RI radius to M  point of shock absorber, I 
inertial moment, f time, I float wide, R external float radius, r 
internal float radius. 

Dynamic behavior depends on the ((adjustment by 
counterweights)). Adjustments are carried out in making 
extreme equilibriums where the counterweights weight is 
adequately distributed into adapted cavities. Extreme 
equilibriums determine a maximal interval (decrement 0) in 
which the upstream water controlled level must vary, each 
opening is determined by this water level variation. Extreme 
equilibriums correspond to I) a maximal opening of the gate 
when a superior water level z,,,, equals an upper water 
controlled level and 2) a closed gate has to coincide when an 
Inferior water level z,,,- D  equals a lower water controlled level 
Gnw 

The hydrostatic force on the float and weight forces produce 
the motor torque. Determination of the torque value that 
corresponds to extreme equilibriums, makes possible to 
establish the relation between opening angle and the water 
controlled level. 

This torque is 

! D 
C,w = K z, - 

srn(a,,,, - a,, ) + sin(a,,) 
sin(a - a,) 

1 
1) 

K = $@(R’ - 2) 

where K results from the computation of the force (Archimede) 
acting on the float considering that the hydrostatic pressure 
forces (result) acting only on the lowest float surface. In every 
static equilibrium (C,w=O), the relation I) establishes the 
opening of the gate as a function of a water level z,, such as 
zmjn I z, I z,, represents the water controlled level in a 
stationary regime. 
Applying the moment theorem, the dynamic equation is: 

]!k.,~~;~K -~~ 
c 

D 
--- 2) 

S’4%,L, - aO) + sin(a,) ! 
sin(a - aO) = Kz, 

where I is the inertial moment, F is a spring-cushion 
coefficient. We have a second order system in (r and z,. 

As presented in [5], we can say that AMILs follow a slow 

variations of the water controlled level according to a static 
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relation. Several responses have confirmed the role of q< low- 
pass )) filter of the cushion-spring mechanism. Element of 
energy dissipation as well as the element ensuring the gates 
stability is also the cushion-spring mechanism. The time 
constants of the gate dynamics are greater than these ones of 
canal pool dynamics. 

3. DISCHARGE EQUATION 
The Ah4IL dynamic behavior could be represented as a 
sequence of steady states. Cm-A&horn Inc. proposes an 
experimental discharge equation type : Q ( cz ) = c ( ,? ) Q  m d* , 

where Q  I <IX = CdS( w,,,<,x ),/?g(z, - z,) is the 
classical discharge equation for a maximal openning and 
c(a)’ the partial openning coefficient, is 

q~=~~~-++.++~, C,=(O.2295oL~iR,)-‘J1-(045Dv!~,)’> 

c,=f.9608 and cJ=cz. From above, openning variable w is a 
function of a and Z, is the upstream gate water level 
(downstream canal pool water level) and Z, is downstream gate 
water level (the upstream consecutive canal pool water level). 
D, and R, are respectively gate-leaf mean width evaluated 
when z, equals the gate a.x~s high and the gate radius. AMIL 
works on free and submerged flow. 
For a first order development around a steady point ( YOS ): 

,QCs) = C@(s) + C,Z,.(s,i - C,Z,ts) 3) 
Outcome (3) comes from linearization, Laplace transform 
aplication and the coefficients C,, C,, C, evaluation. In 
equation (2), z,(s) corresponds to Z,(s). From the static model 
(I) and for a particular case, a(s) can be expressed in termes of 
z,(s). So, in terms of Z,(s) : 

Q(s) = c,,Z,(s) - c,zZ,(s) 1 

This formulation is well-adapted in the case where the gate 
time constants are less than these ones of the canal pool 
dynamics. Notice that different constants must be determined 
from dimensionless equations. It is clear that linearization 
constants presented in stability criteria evaluation bec’ame from 
the dimensionless equations. 

4. DYNAMIC OF THE CANAL POOL 
According to [4], the transfer matrix is 

where ,x* is the canal pool dimensionless length and (/z,(s) and 
&(s)) are the proper values of A(s). 

These latter equations are respectively the reference Froude 
number and the dimensionless reference length. Others 
parameters are: 

1 
6) 

9 



l 2 3.3’ ksL’ dZ’ 
/3, = -2ksL; $+2- +++ 

0 

f$ksL.,J, - ++-kpP,R,J; 
r 

and 

In the above equations, subscript 0 IS related to steady values 
of hydraulrc variables. For a trapecial canal section, reference 
variables are : canal width l,=L,+Zmy,, section 
S,=y,(L,+my,), wetted perimeter P,,,,=L,+2(1 +m2)1’ZY,, 
and hydraulic radius R,=SJP,,,,, with L, bottom canal 
width and m the bank slope. Others variables are: 
ks=l,y,lS,., kp=yjP,, dP,&lz=2(l.O+m~‘“, where, shape 
factor ks, kp perimeter factor and derivative of wetted 
perimeter with respect to the water level, respectively. 
The reference vertical scale is y,=y,, the normal water 
level and the reference horizontal scale is x,, the canal 
pool length. Reference discharge Qr corresponds to 
normal discharge. Equation (5) is the dynamics of the canal 
pool and it represents the distributed parameter system. 

5. INTERPRETATION OF THE MATRIX 
G(S) 

To interpretate physically the transfer matrix, the following 
hypotheses are made: 1) canal is rectangular (ks=/), ii) friction 
rate J and iii) canal bed slope I are negligible. Such hypothesis 
allow us to a particular formulation of the proper values. Let’s 
F, be F,=v,& 

F, V The proper values are: 1, cs) = ___ s = _ --.!I--~ , 
I - F, vr - cr 

/l:(s)= - *s = - 
V 

I s 

r “r + cr 

Dimensionless velocities for positive and negative 
characteristics waves [IO] [ 1 I] are identified. For a subcritical 
regime, 4, IS positive and &, is negative. The product 
R,(s)x* is the dimensionless characteristic time for an up to 
downstream wave and &(s).x* respectively for a down to 
upstream wave. Exponential terms &‘@I’ and eC’2Csi, represents, 
in Luplace space, the delay terms. 
The proper value ratio gives : 

is the cocient of R, (s) _ J - Fr v r - ‘r =-, 
a, lsl I+F, v,+c, 

dimensionless characteristic times for a up to down and down 
to upstream waves. This ratto is less than one and negative 
under regime subcritical condition. Addition of proper values 

‘s:a,(s)+a2(s,=-&\- F,- I I -s=-” T 
I + F,. r i vr -c, v, fC, lb 

this is the dimensionless characteristic time of a full period 
wave. 
In the general case, non negligeable friction rate and canal bed 
slope are different from zero and the canal section is not 
rectangular, the proper values keep the same meaning but 
mcluding the terms of wave damping and deformation. The 
above analysis allow us to write the transfer matrix in the 
following form which simplifies the analysis of the coupled 
svstems stability. 
6. STABILITY OF COUPLED CANAL POOL - 
AMIL GATE SYSTEMS 

Because of the distributed parameter character of the system, 
the stability criteria are difficult to be obtained. To obtain these 
criteria, the basic automatica theorem is applied, so that, the 
transfer functions must be analytical and bounded in the RHP. 
The transfer function are obtained from the canal pool 
dynamics contained in G(s) (5) and that one of the gate in Q(s) 
(4). A single coupled canal pool -AWL is named subsystem. 
The transfer functions of subsytems and coupled subsytems are 
obtained from the hydraulic variable continuity. 

Figure 3 Canal pools and AMIL gates. 
Inputs U(s) and outputs Y(s) 

For two coupled subsystems, notation IS as follows 1) 0 is 
canal pool initial abscissa, L canal pool final abcissa. 0 and L 
are used to indicate position of some variables (for example 
PLi, is lateral discharge at downstream position of I-th canal 
pool. An AMIL controls a local upstream water level. 

The general representation of a subsystem IS : 

Z,,(s) = T(s) * U(s) + W(s) * PL(s) 7) 
where u(s) = lQo,.Zo,+,l’ P,(s) = LPL,l 
U(s) is input vector (upstream discharge and downstream water 
level in the canal pool), P,(s) is the lateral flow or perturbation 
vector. Z,,(s) is the output (upstream local water level ). 

Figure 4 Scheme of linearized system 
Figure 4 presents this linearized subsystem. The transfer 
function of the controlled upstream water level Z,, 
is:ZLi = T,(S) Qo, + T*(S) ZO,,, + W,(S) PLi, 
where : 

T,(s) = 
jgqe A,(s’ c,z4 (s)F, (~1 

c,,/, (s)F, (~1 ’ 
T,(s) = p-1 

c,,f,(s)F, (~1 

W,(s) = - 1, (S)F? (s) ; f,(,i) \,,\, , 
c,,I, (s)F, (s) 

F,(s) = I- z);;e- 

F,(s) = (I - ~td)& = 2 $ with: 

i J ” 
A(s)=(a, -b,)’ +2(a, +b,)(a? +b,)s+(a, +h?)‘s’, 



b, = ir,[,,/i?j& I) ’ 

n,(s)=+ -b,)+(a, -b:is+&i@ 

n,(s)= j(fa, -b,)+(n2 -blls-Jdo)7 

f,b,=:(,u, -b,)+(n,-b, +Za,)s+&i73) 

f:0,=;-(ln;-b,,+(~2-b,+2n,,s-~~)~ 

Subsystem stability 
l The subsystem is stable if the transfer functions have not 
unstable poles. 
Our objective is to show in RHP, that denominators of T,, T? 
and W, do not vanish. So, f,(s) and F,(s) do not vanish on 
RHP. 
From F(s, = I _ .Ms)~~~~~~, by majoring we show 

I 0s) 
/.;<.g. 

ale I 
-.A,,, <, and from f,(s), thus Rev,(s)) is always 

f;r 5) 
positive, its module does not vanish. 

As conclusion these functions are analytical. It has been 
demonstrated that a subsystem is unconditionally stable. 
Furthermore, possible problems of unstability presents in the 
coupled canal pool flow (5’) - AMZL (4) dynamics are 
characterized by discharge and surface wave propagation. So 
that, is the wave energy which produces the interaction (weak 
or strong) between Ah4ILs. In this sense it is interesting to 
study the stability of coupled subsystems. 

Two coupled subsystem stability 
The above results are physically logic. In presence of a finite 
energy perturbation, the subsystem dynamics is stable in the 
sense that the flow is a non negligible friction flow (energy 
dissipation, in spite of gravitational energy contribution) and 
the gate is an element of energy dissipation. 

The transfer function representation is as follows: In (8) 
U(s) IS the input vector, PL(s) is the perturbation vector (lateral 
flows). Z,,(s) is the interested output vector, so 
u(s) = [PO, Zo,+~/’ P,.(s) = I p,, P,.,,,l’ 
The input-output transfers can be written as: 
Z,,(s) = T,,(s)Qo, + r,,(s)Zo,+z + P,,(s) f,, + P,z(s)PL,+, 8) 
Z,,,+,(s) = C,(s) Qo, + L (sP’o,+z + Pz, (s)PL, + Px(s) P,,,, 

where: 
38
P,,(s) = - cII ~e-*“‘)l, (s) F, (s) , 
(c,,f,(s)F,(s))* D,(s) 

T,,(s) = c,,A(s)cz’+” 

(c,,f,(s)Fl(s))‘D,(s) 

P?,(S) = - c,,n,(s)Fz(s)~e”:“’ ) 
(c,,f,(s)F,(s))‘D,(s) 

P,,(s) = - (c,,A*,(s)F,(s)ksL:, s F,(s) + I,(s)F,(s)c,,f,(s)F,(s)) , 
(C,,fl(S)F,(s))2D,(S) 

F,(s) = 1 - fie-\ “‘I 
I s 

FI (s) = , - ++ j(i)> 
I s 

s+P F,(s) = I - e-\“‘J Al,(S) = __ 
B, 

and 

D,(s) = 1 + S’;tksL, s (F,(s)12 * 
A, (s) F, (s)F, (5) 

r,(s) + A 
f,(s) 

In the above section, it has been presented some function 
properties (F,(s), f,(s) and ;1,,2(s)) on RHP (Re(s)X). In 
particular, such functions are analytical on RHP. As before, it 
has to be established the conditions for what transfer functions 
Tq(s) and P,(s) (i, j=1,2) have not unstable poles. Functions 

f,(s), Ms), F,(sj, F/s) and D,() t s m ervene in transfer function 
denominators (8). The functions f,(s), n,(s), F,(s), Fz(s) are 
analytical on RHP. So that, eventual unstability oi‘ coupled 
subsystems comes from the properties of the function D,(s). 

After this, a sufficient condition is given in order to //D,(s) is 

analytical on RHP. Let’s a,, ad and a, be ksL;, a , 
3 - 

c: ! 
a4 = c,,a, and 1 A a, =- Let’s a,>b, et az>b2, tr4 and a,, 

Cl1 
positive reals such that I/D,(s) is analytical if: 

on Re(s=n+iy) positive. 

The sufficient 
da, (1 + ,-(.,-h))~ _--* 
az (, - e-‘“‘-““)J 

P -+-- 
(0, - b, 1 

condition is 

<I 
-,“,-h,l)2 + u5e-t”, 4, 

This condition results from a majoration of the function 
denominator modules. Notice that this condition depends on 
the hydraulic (F,, x) and geometrical (k.r, kp) canal pool 
parameters and linearized gate discharge equation (c,,,c,:) 
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parameters. Because of the sufficient character of the stability 
condition, this one has to be evaluated in order to establish the 
stability of coupled subsystems. 

Evaluation of the stability condition 
The dimensionless number x depends upon x,, the reference 
canal pool length. As presented in its equation, for some 
geometric and hydraulic reference conditions, a great x 
(respectively small) is associated to a long canal pool 
(respectively short canal pool). The evaluation condition is that 
the reference Froude number is less than one. 

Notice that with respect to the unconditionallity of a subsystem 
stability, the two coupled subsystem dynamics can be unstable 
because of the (non linear) interaction of subsystems by way of 
the wave loops in the canal pools. In [4], it is proposed a test 
canal pool sorting. This classification is used in order to 
analyze the stability sufficient condition. 

O<,y<O.6 
O<n<3 1 type I. Non damped waves 1 

1 n>? 1 tvue 3. Damued waves 1 I 
0.6~ ~~1.35 x>1.35 

0~ n<3 1 type 2. Non damped waves 1 * 

1 rl'3 1 type 4. Damped waves type 5. Damped waves 
where v=x/(F,*(I-F,)) A great ‘7 value means that waves are 
damped [4]. It is considered that this type (*) of canal pool is 
not representative, naturally, of the irrigation canal pools. 
Canal pool clasification is constructed from the (v,x) values. 
The used test canal pool characteristics are: 
Type [ L, 1 m  1 I I x I K  I em, I Qem. I Y,",,, Ywt 

E.cO.5. 
I 1 7 1 I5 1 .OOOl 1 300; 1 50 13.5 1 14 1 0.97 1 2.12 
5 1 8 I 1.5 1 .0008 1 6000 1 50 1 20 1 80 1 1.37 1 2.92 

F.>O.5 
I 1 I 1 1.5 1 ,001 1 550' 1 60 1 3 1 I2 1 0.98 1 I.82 
5 1 I 1 I.5 1 ,002 1 1200 1 71 1 0.5 1 2 1 0.30 1 0.63 

Notation is I canal pool slope, x: canal pool length , K: inverse 
of Manning coefjcient, Q,,,,,: minimal discharge, Q,,,,=. 
maximal discharge, y,,,,. minimalwater level and y,,,,: maximal 
water level 

All test canal pool types were used in order to analyze the 
sufficient condition behavior [ 121. In this paper, two types of 
test canal pool are selected (see tables) in order to show the 
behavior of the stability condition following the Fr number. In 
each case, they represent the extreme hidraulic behavior of the 
test canal pools. 

Examples of stability condition evaluation 
Some precisions have to be given before showing the 
evaluation results. The Saint-Venant equations have been 
linearized around a normal steady regime. For a normal 
regime, the transfer functions and the proper values depend on 
F,-, x, kp and ks parameters. 

These parameter values were calculated numerically for every 
pan (Q,,y,) by varying 0.01 the water level between the 
interval y,,, and y,,. Canal pool dynamics is, in this sense 
established. Such a dynamics has to be coupled to gate 
dynamics, This latter one is also established from a 
linearization process by respecting the discharge continuity in 
the canal pool. In fact, it was made for the pair cQ,,,,Xr,,,,,J. To 
conserve c,, and c,? constants means to consider a same order 
variation of this parameters for other regime conditions. The 
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initial angle corresponds to a,=0.9am, la;,,nr=df. The Initial 
head was determined in order to satisfy this opening and the 
maximal discharge. The same steady regime was considered in 
both canal pools, so the second canal pool bottom was 
diminished in order to respect this head. Linearization gate 
parameters computation has been done before. 
The used gate parameters c,, and cII are presented for each 
figure and they are, of course, established for a dimensionless 
discharge equation. In the result presentation, the "AMIL 
stability condition” represents the sufficient stability condition 
evaluation. So, if this condition is less than one thl: coupled 
subsystem dynamics is stable, else such dynamics could be 
unstable. 
For Figure 5, the gate parameters are : c,,=35.0920 and 

~,~=19.435/. The 
2 5, system could be 

“\, unstable. The 
24 

A ILslability‘&nd/tion q 
\‘\ criterium reads in a 

non damped wave 
2 4 1 flow (s]) and a great 

Water level perturbation celerity 
01 1 12 1’4 lli II 2 2* (F,<<l)> the 

Figure 5 Evaluation of the 
criterium, type 1 with F,<O.5 

dynamics of two 
coupled subsystems 
could be unstable. 
Unstability 

increased if the canal pool length or) is short. For Figure 6, the 
gate parameters are : c,,= 19.6751 and c,,=1.9543. The system 
is stable. Criterium reads in a damped wave flow (‘7) and a 
weak perturbation celerity (F,<<l), the dynamics of two 

coupled subsystems ox>+ 
OII , is stable. Stabilrty 

A 4 IL sfanility aonditisn augmented If the 
0 ‘?) .\ 
o,,i 

canal pool length 
> 1 

0 <Ii k) is great. So, for 

W  aier Tbvq- . 
a great x, the 

1-a -lk rT : -2 2 I. 26 21 1 evaluated criterium 
tendance IS to 0. 

Figure 6 Evaluation of (he 
criterium, type 5 with F,<O.S 

This shows that the 
criterium ,lllows to 
unconditronal 

stability for two coupled long subsystems. It is verified m  
canal pool type 5) with a F,<O 5. 

For figure 7. the gate 
parameters are 
c,,=37.0468 and 
~,~=0.36/9. The 
system is stable. The 

001 I- i 7’ criterium says in a 

perturbation celerity 
Figure 7 E\~altralion of the (F,<I), the dynamrcs 
criterium, type 1 with F,>O.S of two coupled 

subsystems IS stable. 
Stability diminished if the canal pool length Cy) is short. The 
unstability tendence is present for a short canal pool (,l tends to 
0). This translates a close coupled subsystems. 
For Figure 8, the gate parameters are c,,=24.?/195 and 
c,,=O.4669. The system is stable. The criterium says in a fort 
damped wave flow (7) and weak perturbation celerrty (F,->I), 
the dynamics of two coupled subsystems is stable. Stabrlrty 
established if the canal pools are strongly separated :critenum 
-x./O-‘). For a great ,y, the evaluated criterium tend12nce is to 

2 



 

0. This shows that criterium produces the unconditional 
stability for a two coupled long subsystem. It is ver’ led in 

151’0 f canal pool ype 5) 
with a F,.>O.S. 

A@&$ility condition 
6 5, Now, it could be 
68 interesting to show 

the 5 5. criterium 
Water level .’ utility. Let us 

a3 035 04 045 05 “55 05 066 search the minimal 

Figure X Kvaluation of the 
separation distance 
of the AMIL gates, 

criterinm, type 5 with F”10.5 in order to respect 
the stability of the 

coupled subsystems. Certainly, it is achieved by varying the 
reference length x,. of the canal pool. To illustrate this (see 

Figure 9), the canal 

@IL stbbility condition 
pool characteristics 
type I) with F,>O.S 
are used. Even if 
this length varies, 
this canal pool is 
representative of 
this kind of test 
canal pools. We 

Figure 9 k%lluation of the criterium can say that such a 
\+ith a minimal x,. tvpe I with F,>O.S system is stable for 

a minimal length, 
x,=86 m. 

Discussion of results 
In a subcritical flow with strong celerity waves (F,<<O.S), the 
evaluated criterium is more sensible to the reference Froude 
number than the dimensionless length (d. 

Behavior of the evaluated criterium with respect to the 
reference Froude number F!. In subcritical regime conditions 
(small Froude number), the unstability problems are due to the 
dynamic waves (surface perturbations) and not to the mass 
waves (,yJ. The dynamic waves produce the surface motion 
without real mass transfer. Stability criterium has showed that 
all the dynamic waves damp in a very long system. Physically 
translated, every surface (dynamic) wave is damped in a long 
distance even if the flow friction is weak. Results for F,.,O,J 
have showed the same behavior. 

According to the characteristics theory, this reference Froude 
number shows that the perturbation waves goes easily up to the 
canal pool if this number is small, and goes difficult up to the 
canal pool if this number increases. In fact, in supercritical 
flow, no waves goes up to the canal pool and there exists a real 
mass transfer. 

Behavior of the evaluated criterium with respect to the 
dimensionless length r. This criterium permits us to deduce the 
influence of close subsystems. This dimensionless number 
plays the role of a short or long distance. First, this criterium 
allows us to an unstable subsystem dynamics for every kind of 
test canal pool, when x->O, (a close subsystem). Second, the 
criterium tends to 0, when x is great (a long separated 
subsystenl). When determimng the minimal gate distance, 
characteristics of a test canal pool type were no modified. 
Notice, however, that the computed distance does not take into 
account the gate dynamics. The criterium considers that gate 

3873
reacts instantaneously (statically) to upstream local water level 
perturbations. 

Brief, from the evaluated criterium study with respect to the 
coupled subsystem stability: the energy interaction between 
two subsystems is more important when down-upstream wave 
celerities are great and the interest of this stability sufficient 
condition is that it give us the conditions of a stable behavior 
in each test canal pool type. 

7. CONCLUSIONS 
Dynamics of coupled canal pool - AWL gates has been 
studied. Function of the (canal pool) hydraulic (Fr and x) and 
geometric (ks and kp) and the linearized gate discharge (c,, and 
c,]) characteristics, a set of parameters was found to be 
responsible of a stability criterium definition. First, from the 
subsytem stability study, it was established the 
unconditionallity of the subsystem stability and second for the 
coupled subsytem stability study, to satisfy this criterlum 
means that transfer functions are analytical and the coupled 
subsystem dynamics is stable. 

From the coupled subsytem stability study, result an,llysis has 
permitted to determine the criterium sensibility with respect to 
the reference Froude number and to sligth the interaction type 
between subsystems. A strong interaction is present when the 
perturbation celerity is great. 
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