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ABSTRACT 

In this paper, we consider the optimal control prob- 
lem for complex irrigation systems, using a receding 
horizon. The idea of decomposition is introduced for 
the goal of both reducing the computional complexity, 
to comply with the system topology and the mon- 
itoring architecture. A decomposition-coordination 
algorithm based on the use of both an augmented 
Lagrangian and the duplication of variables is de- 
veloped which is suitable for the optimal control of 
complex irrigation systems, composed of water reten- 
tion systems, water supply/distribution systems us- 
ing canals and pipe networks. In some conventional 
decomposition-coordination approaches, such as the 
price decomposition-coordination algorithm, the cou- 
pling contraints between subsystems or the associated 
Lagrange multipliers are used as coordination vari- 
ables. In our case, some physical variables, such as 
water flow rates, are duplicated in each subsystem, 
where they appear. Some compatibility constraints 
are then introduced and their associated Lagrange 
multipliers are used as coordination variables. In this 
paper, we present the application of this approach to 
to the Canal de la Bourne irrigation network, which 
irrigates the agricultural plain of Valence (South-East 
of France). 
Keywords. Large scale systems, optimal control, 
decomposition and coordination methods, augmented 
Lagrangian, nonlinear programming. 

1. INTRODUCTION 

Most irrigation systems are based on a network of 
main, lateral (secondary), sublateral, tertiary, and 
quaternary canals. Water is taken from rivers or lakes 
and from boreholes (underground resources), and cir- 
culates in the water system through some canals and 
somtimes pipes, in order to be delivered finally to 
consumers. In this paper we will consider irrigation 
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systems which combine both water retention systems, 
open-channel water supply systems and pipe dist ribu- 
tion systems. The problems related to water supply 
network management ([I] and [a]). can be classified 
into three groups, according to the time horizon on 
which they are considered. 

l Short-term problems: These problems arise in 
the daily management of the network. 

l Mid-term problems: The middle-term problems 
are related to a more strategic management of 
the network, involving horizons longer than one 
day. 

l Long-term problems: The long-terms problems 
concern essentially the optimal design of the net- 
work. 

2. PROBLEM STATEMENT 

In this paper we are concerned with short-term or 
mid-term planning problems of irrigation systems. 
Under the assumption that the values of user de- 
mands are known (on the basis of prediction met,h- 
ods [l], [7] for example) for a receding horizon T, the 
problem is to determinate at any time how to oper- 
ate pumps, boosters, valves, gates and other control 
devices in order to minimize some cost function and 

to satisfy users demands. The operating cost of the 
network is composed on one hand of pumps. boosters 
and gates electric consumption expenses. and on the 
other hand of water waste costs. This objective func- 
tion has to be minimized under the local and the net- 
work dynamic constraints. The local constraints arise 
from physical limitations and from operation consid- 
erations (minimal and maximal bounds of reservoir 
levels, maximal variation rates, maximal pipes flows, 

). Some of the constraints are strengthened in or- 
der to insure network security. In the case of na- 
ter systems with electrical power stations (such as 
the Canal de la Bourne system) we have to subst ract 

 



some profits due to power generation from the cost 
function. 

2.1 Modelling of a large irrigation system 

.ts we mentioned before, in an irrigation system we 
can have two types of water systems, water reten- 
tion and water supply/distribution systems. Water 
retention systems provide reserves for water supply 
and distribution systems. .I retention reservoir has a 
variable inflow &r(t) and outflow QR(~) and is repre- 
sented by the following dynamics: 

+ c&ii(t) 
IEZ 

where &I is an outflow which is at the same time an 
input flow to a canal! W(t) is the reservoir volume 
which depends on the reservoir water level, Qoj are 
output flows from the canals connected to the speci- 
fied node, Qu;j denote water consumptions, and Qzj 
are the node boundary inflows. In this paper we con- 
sider that each canal is represented by a second-order 
linear dynamics with natural pulsation w,, damping 
coefficient q* gain A’ and with a pure transportation 
delay T: 

ijo = -2qw,J&(t)-w;Qo(t)+Kw;QI(t-T) (2) 

For the water retention systems and the canals, the 
variables of the model can be now classified as follows: 

State vector ~-c(t) = (&o(t)> W(t)) 
Control vector w-c(t) = (Qu(t), QR(~)) 
Disturbance vector tpC(t) = (&z(t)) 
Water supply/distribution systems are composed 
of pipes, control valves, pump stations, treatment 
works. reservoirs and water consumers. The elements 
are interconnected to produce a network composed of 
nodes (reservoirs and treatment works) and branches 
(pump stations, pipes, valves). The equations of 
the network ([L], [2]) express flow conservation at 
nodes (Kirchoff conservation law) and relations be- 
tween head losses and heads for arcs, namely: 

c qij = dj 
iE J, 

TitJ = hi - h, , 

(3) 

(4 
where dJ is the consumption at node j and qij is the 
algebraic tlow from node i to node j (i is an ad,jacent 
node to j, and the set of such nodes is denotejd ,J,). 
Variable hi is the head at node i and Ttj is the head 
loss in the pipe connecting nodes i and j. There exists 
for each arc a relationship between flow and heaci loss. 
For a pipe, the corresponding equation derived from 
the Hazen-Williams formula ([I]) is 

rij = &j.qij.JQzjI. (5) 

where Ri, is the resistance of the pipe connecting 
node i to j. For a valve, a similar espression holds. 
For a pump, the head increases is usually approsi- 
mated by a parabolic function 

Rij = aij .qt?J + bij .qrJ~jJ. (6) 

Equations (4)-(7) constitute a system of nonlinear 
static equations describing the instantaneous equilib- 
rium of the network. The dynamic equations are re- 
lated to the storage capacities and the canals (see 
equations (1) and (3)). In particular. t.he water level 
in the reservoir is a particular head variable. For the 
water supply/distribution systems. the variables from 
the model can be classified as follows: 

State vector zs(t) = (q(t). h(t)) 
Control vector .u,(k) = (c(t). n(t), s(t)) 
Disturbance vector z,(k) = (d(t)) 

where q and h are respectively the pipe flows and 
heads throughout the network, and t‘. n. s are respec- 
tively the degrees of valve opening, and the number 
and speeds of pumps in operation, and d is the de- 
mand vector. Finally, in the case of a combined water 
retention, supply and distribution system, after time- 
discretization one gets a discrete-time implicit sin- 
gular model (due to the coupled static and dynamic 
equations) : 
E.t(k+ 1) = F(z(k), u(k). z(k)). (7) 

where matrix E is singular. .Z = (.rrc. c,) is the state 
vector, ‘11 = (urcr u,) 1s the cont,rol vector. and : = 
(G-c f f3 ) is the disturbance vector. 

2.2 Formulation of the optimal planning 
problem 

We seek to find the optimal control u(k). k = 
0, . . . . T - 1, where T represents the control horizon. 
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with time step of one hour, which minimize the fol- 
lowing cost funtion: 

ttT-1 
J(Z) zt) = C (P(dk), u(k)) + Pe(dk), u(k)) 

k=t 

-P,(dk), 4k))) 

(8) 
where 

- P(z, u) is the cost function due to the 
pumping stations which is the summation 
over all the pump energy consumptions; 
- Pe(z, U) is the penalty cost function for 
the throwing out flows (water waste); 
- Pr(z, U) is the profit function due to power 
generation; 
- T is the receding horizon. 

subject to: 

1. The state representation of the system (dynamic 
and static parts): 

E.x(k + 1) = F(z(k), u(k)), (9) 

2. The bound constraints: 

;t-rr(t+k) <z,k= l,..., T, (10) 
21 5 u(t + k) 5 8, k = 0, . . . . T- 1. (11) 

We can reduce the problem to solving 

min J(u) 
UEU, (12) 

where u = (u(t), . . . . u(t+T- l)), l7, is the feasible set 
previously defined, and J(u) is the total cost function 
defined by (8). 
3. SOLUTION BASED ON 
DECOMPOSITION - COORDINATION 

The large structure of irrigation systems suggests 
the use of decomposition techniques to reduce the 
problem size. Our approach is based on the ideas 
of decomposition-coordination [3], the duplication of 
some variables [5] and the use of an augmented La- 
grangian formulation [4]. 

3

Let us consider the following class of optimization 
problems: 

The duplication of variables leads to the new problem: 

Jr and J2 are two functionals from lR” to lR, I’/ nd 
Vf are some closed subsets of lR”. 01 (resp. 02) 
is a mapping from R” to IR”’ (resp. Rm2). The 
additional constraints u = u are called “compatibil- 
ity constraints”. The two formulations are obviously 
equivalent. 

In order to illustrate this idea in the case of irrigation 
systems, we consider a simple canal stretch connected 
to a pipe network: 

Figure 1: A simple network example 
Let us consider the network of Fig. 1. In 
order to achieve the decomposition of this 
network into 3 subnetworks, the connections 
of the variables qa, qb, and qc are fictitiously 
cut as shown in Fig. 2. This decomposition 
will create two independent flow vectors. the 
initial vector q = [qa qb qc], the so-called 
dual vector g = [ia ib GC], and three inde- 
pendent subnetworks. 

More generally, we will consider now the decomposi- 
tion into N subnetworks made of either canals or pipe 
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Figure 2: Network decomposition 

subnetworks. After decomposition and duplication of 
variables, the problem may be formulated as follows: 

.v 
min C Ji(uir qi) 

u,, 9,EU’;, a=l, ,N i=l (15) 

subject to: 

!V 
qz- C Eijqj =O,i= l,...,N (16) 

j=l,jfi 

where ‘Eli is the control vector ofsubnetwork i, qi is the 
vector of flows interconnected with the other subnet- 
works, and Uj is the feasible set for each subnetwork 
i, i = 1 N. E;j is a matrix whose entries are either 
0 or 1. In the case of exemple of Fig. 2, q1 = (qa, qb), 
q2 = (&, qc) and q3 = ( ia, qe). The augmented La- 
grangian associated to this problem is given by: 

L(Ul,...,UN,q,P)= e{Ji(Wjqi) 

i=l 

+ < pi,qi - 5 Eijqj > +i IIqi - 5 QqjI121 
j=l,j#i j=l,j#i 

(17) 
where pi is the Lagrangian multiplier vector asso- 
ciated to each compatibility constraint. Since the 

quadratic term f llqi - 5 Eijqj[12 is not sep- 

j=l,j#i 

arable, and then L(.) is not separable, classical 
decomposition-coordination methods cannot directly 
apply. In order to overcome this problem, an algo- 
rithm derived from Algorithm 14 in [4], is proposed, 

which uses a linearization of 5 llqi - 5 Eijqjll”. 
j=l,j#i 

For a network divided into N subnetworks, we will 
have to solve N independent subproblems, which are 
coordinated via a coordination level in order to guar- 
antee that the comptability constraints are met, as 
shown below: 
At iteration k, the following subproblems are solved 
simultaneously: 

For each subnetwork (i=l, . ,N) apply step (I) 

min Ji(Ui: pi) 
UCAEU; 

C < Pt + C(qr - C Ejiqf), d?jiqi > 
r=l.i#j 

+ < Pf + C(P,” - C 
j=l,j#i 

Eijq$). qi > +i/lqi - qf[I” 

* uy, q,k+1. E > 0 

[ 

.\ 
(2) P$+l = P” + P(PY -yFAi Es;+‘). (19) 

i=l ,...: N, p >jO 

k t k + 1 and goto to step 1). 

4. APPLICATION TO THE CANAL DE: LA 
BOURNE SYSTEM 

Our primary research goal is to automatically operate 
the “Canal de la Bourne” irrigation system, in order 
to improve water distribution efficiency and safety [6]. 
This irrigation system consists of a 45-kilometer long 
canal connected to two secondary canals (called S2 
and S3) and two main reservoirs supplied by a small 
river (called “La Bourne”), representing more than 
70 km of canals, as represented by Fig. 3. More than 
20 pumping stations are distributed along the canals, 
bringing water to the agricultural plain of Valence 
(South-East of France). 
Figure 3: System structure 
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In order to illustrate the application of this algo- 
rithm on a simple example, we propose to formu- 
late the short-term optimal control of the main sec- 
tion of this irrigation system in terms of water de- 
mands. This section begins at the regulator gate 
called “Orme” on the main canal and ends with the 
reservoir called “Freydier” and the pumping station 
called “Sud Valentinois”. The following tables sum 
up the notations used for the control problem formu- 
lation: 

Tvve I name I Water flow rate I 
I Pumpmg 1 La Vanelle 1 il I 
I Regulator gate I Orme I 41 I 

Regulator gate 
Pumping 
Pumvine 

s3 
Lafarge 
Riviers 

Table 1: Control units 

I Name 1 Water flow rate, user demand 1 
Mondy-hs 
Mondy-bs 

Monts du Matin 
Ruches 

Bel-Ebat-hs 
Bel-Ebat-bs 
Montelier-hs 
Montelier-bs 

PI, dl 
pa, 4 
~3, d3 

~4, d4 

~5, d5 

Pcir & 
~7, d7 

vn = dn 
Riviers 
Lafarge 

Sud Valentinois 

pg, dg 
PIO, dlo 

PII = dll 

Table 2: Pumping stations 
f Name 1 Water volume 1 

Table 3: Reservoirs 

The model of the system is given by the following 
equations: 

38
Lafarge/Riviers 
I x-, 

410,9 3 

Table 4: Pipe connections 

Kirchoff laws: 

dl = PI+ 41,s 
d2 = il + p? - qz.4 
d3 = ~3 - q1,3 

4 = ~4 + qz,4 - q4.a 

& = ~5 - qs,7 

ds = P6 + 44,s 
& = ~7 + qs,T 

dg = m + qlo.9 

dlo = PIO - qlo,g 

(20) 

Main canal dynamics: 

Ps(k) = a(k) - q2tk.j 
qG(k) = Fl(q6(-),43(-),p5(-)~P6(-),P7(-).P~I(-)) 
47(k) = i2(k) + q6(k) 

(21) 
where z(-) refers to past values of the variable E; 
q1 is the water flow rate at the regulator gate called 
“Orme”. 

Secondary canal S2 dynamics: 

dw = ~2M-4, et-)I 
Secondary canal S3 dynamics: 

Reservoir dynamics: 

(22) 

(23) 

Vl(k + 1) = K(k) 

+(qo(k) - a(k) - Pl -P2 - P3) 
V,(k + 1) = V?(k) 

+tqhtk) - P4(k) - dh(~))) 
v3(k + 1) = h(k) 
+tq&(k) - P3(k) - P9(k) - !?s(h(k))) 

v4(k + 1) = h(k) 
+(94(V5(~)) - i2(k) - PlO(k)) 
v5(k + 1) = %5(k) 
+(q7(k) - g5(Ki/;(~)) -P11(~)) 

(24) 

where the g;‘s represent the algebraic model of the 
sweirs; qo is the upstream flow rate at the beginning 
of the main canal section. 
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The cost function J is expressed as the summation of 
the pumping cost Ji: 

t+T-1 3 11 

Jl = c {~fpj) + -p;(pj)} (25) 
k=t j=l j=l 

where the Pj(.)‘s and PT(.)‘s represent the pumping 
cost functions, and of the penalty costs for wasting 
water at the sweirs, denoted 52: 

t&T-l 5 -,. . - 
J2 = c cr<,gj(r’;)2, ~~ > 0 (26) 

k=t j=2 

All the variables involved in this problem are sup- 
posed to bounded. The related optimal control prob- 
lem appears to be nonlinear and non convex. 

In order to illustrate the here-proposed decomposi- 
tion - coordination algorithm, we consider the case 
when the system is divided into two sections: the 
main canal + the secondary canal S3 + Lafarge reser- 
voir and the secondary canal S2. In this case, vari- 
ables 42.4, 44,s and q2 have to be duplicated (&,4, 
(I+s> 42). Therefore, three additional compatibility 
constraints have to be introduced: 

42.4 = 42.4; q4,8 = i4,8; 92 = i2 (27) 

Finally, application of the here-proposed two-level al- 
gorithm leads to: 

Main Canal: Iteration Ic 

i 

t+T-1 3 

k=t j=l 
5 

j=l,j#4 

(la) 
+ C lijgj(Vj)2} 

j=3 

+(d + 4&4 - i:,4Na4 

+(pS + 4Qi.8 - i~4k.8h4,8 
s.t. dynamics of the main canal. 

Secondary canal S2: Iteration k 

16) 

t+T-1 
min C {P4(p4) + Ii2g2(V2)?} 

k=t 

-(P:’ + +A,4 - 8 4))i2,4 

-(Pi + c(q4k,* - &3))91.8 

-(d + 4qs - iw2 

_ -t&(&,4 - i$,,,’ + h(44.8 - i&J2 + &(@2 - i$)? 

(29) 

3879 
s.t. dynamics of canal S2. 

1 

Pl k+l = p: + P(q2,4 - i2,4)r 

(2) PY=T;;;$%; 1 $E& (30) - 9 
P>O 

k c k + 1 and goto to levels (la) and (lb). We can 
notice that the levels (la) and (lb) can be solved in 
parallel. 

5. CONCLUSIONS 

In this paper, we have presented a new decomposition 
- coordination algorithm suitable for solving optimal 
control of large-scale systems. It is based on both the 
duplication of some variables and the use of an aug- 
mented Lagrangian formulation. in order to ensure 
existence of saddle-point in the non convex frame- 
work. To illustrate this approach! we have considered 
the optimal control of a real irrigation system. 

References 

PI 
PI 

[31 

PI 

151 

M.A. Bryds. Water systems. Prentice Hall, 1994. 

P. Carpentier and G. Cohen. Applied mathemet- 
its in water supply network management. lluto- 
matico, 29(5):1215-1250, 1993. 

G. Cohen. D&composition et coordination en op- 
timisation dkterministe diffe’rentiable et non dif- 
fe’rentiable. PhD thesis, Universite de Paris 
Dauphine, 1984. 

G. Cohen and D. Zhu. Decomposition coordina- 
tion methods in large scale optimization problems. 
Advances in Large scale systems, 1:203-266, 1.984. 

D. Georges. Optimal unit commitment in simu- 
lations of hydrothermal power systems: An aug- 
mented lagrangian approach. Szmulation practice 
161 

171 

and theory, 1:155-172, July 94. 

D. Georges and H. El Fawal. Modeling and iden- 
tification of the canal de la bourne irrigation sys- 
tem. application to a predictive control strategy. 
Internatzonal workshop on regulation of irrigation 
canals, April 97. 

M. Tomczak. Mod&ation ARMA de s&es 
chronologiques. Application b 1 ‘automatisution 
d’un re’seau d’irrigation. PhD thesis, Universiti 
de Nancy I, Janvier 1990. 


	MAIN MENU
	PREVIOUS MENU
	*******************
	Search
	Print

