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Abstract where P represents the LTI discrete-time generalized plant

The aim of this note is to present an application of the SL(_Flgure 1).K the LTI discrete-time controlle (P, k) = @

COT Fortran Library and PolyX MatL&b ToolBox for poly- the lower Iin_ear frgctional transformation éf by K. We as-
nomial factorization of large MIMO systems. The correspond-Me the dimensions ab, z, u, andy arén, n., n,, and

ing polynomial matrix fractions have been calculated for t respectively. It can be. shown [1], that this problem can be
H, U andV matrix transfer functions coming from the Youlaormulated as that of finding:

parametrization of a high order system (an irrigation canal).

The H (resp.U andV') matrix transfer function has 5 inputs, APt = inf  |H-U=xQ=V|, )

10 outputs and 130 states (resp. 5, 10, 65(fcand 5, 5, 65 Qedyn "™

for V). The results proved to be very good in terms of singular

values matching between the original and the factorized Syghere« denotes convolutiont € ¢7=*™, U € ¢7=*™ and
tem (polynomlgl matrix fract|_0n). Scaling has be_en mtro_dl_Jceg,, c g?ymw are fixed and depend on the problem ddtan.,,
reducing considerably the size of the polynomial coefﬂmentﬁ,

. . . . 21 Ny, NNy,
without losing precision for the singular values.
In order to transform this problem into a Finite Dimensional

Linear Programing problem (FD LP) one solution is to com-
pute Finite Impulse Response (FIR) approximationgofU
andV, and to look for the optimad) with a finite support of

1 Introduction

z W length V. It is proved [2], that this approach with one addi-
D - tional constraint provides converging upper and lower bounds
y P —— for the original problem, whelV — oc.
u

2 Incentive for polynomial factorization

The numerical approach used to solve the previous problem
— > K can lead to a large number of linear constraints in the LP prob-
lem if the FIR approximations off, U andV are very long.
Another approach can be to compute a right (resp. left) poly-
nomial factorization ofU (resp. V): U = N,,..D,} (resp.
V = Dv_ll.Nq,l). A similar work can be done witli but will
not be detailed in this note. The original problem is then trans-

Figure 1: Standard framework

In many control design problems, the objective s to find a stigrmed into:
bilizing linear time-invariant (LTI) discrete-time controlléf
which, in addition to stabilizing the closed loop system, mini-
mizes some norm(s) of the transfer matfix w — z (Figure  4°P" = inf  ||[H — Ny, x D'« Q + D'« Ny, (3)
1). If the considered norm is tife, or H., norm of the trans- Qery ™
fer matrix ® in the frequency domain, then a state-space solu-
tion exists for the controller. But in the case of thenorm of -
the impulse response, no state-space solution exists for the mo- = _ inf [H — Nup * Q * Nyl (4)
ment, and the problem must be solved by a linear programming Qe
approach [1]. This can be stated as solving: _
with @ = D' «Q = D!
Proof: U andV are stable= the \-TransformD,, and D,



] || without scaling] with scaling | ] || without scaling] with scaling |

from state-space || 2.816010~'° | 2.816010 10 from state-space || 2.816010~'° | 2.816010'°
left factorization 9.506410~° 9.120610~° left factorization 2.7644107° 2.972010°°
right factorization|| 9.589910—° | 9.592010° right factorization|| 9.865510=° | 9.745010~°

Table 1: TBO3AD: Maximum difference of singular values tdable 3: PolyX: Maximum difference of singular values to the
the ones obtained with the MatLab “Sigma” function, tor ones obtained with the MatLab “Sigma” function, fGr

] || without scaling| with scaling [ order |

Nui 1.789410% 0.2767 / deviation is 9.50640~ for the left factorization). Neverthe-

Dy 6.467610"° 1.0 7 less, one drawback of this factorization is that the coefficients
Nur 5.115910™ 0.6223 13 of the polynomial matrices are very large in our example (Ta-
Dy 8.221510"! 1.0 13 ble 2). But this can be easily solved by scaling them (for exam-

e - ] . | | ¢ coeffici gle by dividing all coefficients by an appropriate scalar, which
Table 2: TBOSAD: Maximum absolute value of coefficients %oes not change the condition number of the matrices). The

the obtained polynomial matrices, and order of the poWnO"Pﬁatching of the singular values is not affected (Table 1), and
als, forty the maximum value of the coefficients of the polynomial ma-

trices is greatly reduced (Table 2). This is important if these
coefficients are then used in a Linear Programming software.
It would be probably a good idea to add this scaling option to

~ ~ _ ]
have no unstable zeres D, and D~ € ¢, (Weiner The both packages.

orem) and therefor€) < ¢, < @Q € ¢;, which means that
Searchlng OveQ |S eq u |Va|ent to Search | ng ov@‘ Original system - Sigma MatLab command Original system - D + C.inv(iw.| - A).B
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3 Computation of the polynomial factorizations - ”

20 20

Singular values
Singular values

At least two softwares or libraries can compute such polyno
mial factorizations. The open FORTRAN library SLICOT [3]

10 10

proposes the TBO3AD routine. The PolyX MatLab Toolbox Z _12
[4] proposes the routines ss2lmf and ss2rmif. 10 Y requency 10 10 0 requency . 10
|n Order tO use the TBO3AD SLlCOT routlne from Matl_ab, a 60 Left polynomial factorization — inv(DI)*NI 60 Right polynomial factorization — Nr*inv(Dr)
Fortran program (MTBO3AD.f) has been written. This source s 50

code has been compiled using the MicroSoft PowerStation 4.9 + “©

Fortran compiler, and linked to the SLICOT, LAPACK and ; *
BLAS libraries [3]. This compiled program (MTBO3AD.exe)

30

20 20

Singular val
Singular values

10 10

is then called from a TBO3AD.m MatLab function. More re- | 0
cently, we tested another approach, consisting in generating a.,_ - - . b - - .
.mex file using the Digital Fortran Compiler 6.0. In terms of * " Frequencyw * 0 " erequencyw °

computational speed this second approach is 3 to 5 time faster.

. . Fi 2: [ f the singul I
In PolyX the routines ss2Imf and ss2rmf are called directly igure 2: Comparison of the singular values or

from MatLab.

In the following sections the two packages are tested on tge Comparison with the PolyX ToolBox
same examples.

The results obtained with the SLICOT TB0O3AD routine are
4 Results of the polynomial factorization oflU compared to the ones obtained with the MatLab Polynomial

ToolBox PolyX (Tables 3, 4, 5, 6). These results have been
The left and right polynomial factorizatioli = D;ll.Nul = kindly provided by PolyX, inc [4]. The results are very simi-
N...D,} have been computed using the SLICOT TBO3ADxr, as far as the singular values and the maximum polynomial
subroutine [3]. Thel/ system has 5 inputs, 10 outputs andoefficients are concerned. Except in one case (right factoriza-
65 states. The order of th€,; (resp. D.;, N, D) matrix tion for U), PolyX gives slightly better results. Also, with both
polynomial is 7 (resp. 7, 13, 13). The singular values of tigackages the computation time is about 1 to 2 seconds on a PC
original system are compared, over a large range of frequéased on a Pentium II, 350 Mhz (and about 0.3 seconds on a
cies, to the ones of the left and right polynomial factorizatiori@entium Ill, 667 Mhz with the exe file method and about 0.06
(Figure 2, Table 1). The matching is very good (the maximuseconds with the mex file method).



] || without scaling| with scaling [ order | These polynomial factorizations are used and illustrated in a

Nui 1.757510%3 0.2680 7 companion paper [5].
Dy, 6.558410™ 1.0 7

Ny 3.20541011 0.4997 13 Acknow|edgment
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Appendix 1 - Results for H
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Figure 3: Comparison of the singular values fér

|

|| without scaling| with scaling |

from state-space || 4.749410-10 [ 4.749410~ 10
left factorization 2.333410°8 2.334210°8
right factorization|| 1.274410~8 1.276310~8
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Figure 4: Comparison of the singular values Yor

|

|| without scaling| with scaling

from state-space || 8.704110~ ™ [ 8.704110~ ™4
left factorization 1460210~ | 1.461910~'2
right factorization|| 1.009010~'? | 1.003610~'2

Table 7: TBO3AD: Maximum difference of singular values tdable 9: TBO3AD: Maximum difference of singular values to
the ones obtained with the MatLab “Sigma” function, Tor

the ones obtained with the MatLab “Sigma” function, fér

] || without scaling| with scaling [ order |

N 2.591110° 0.0028 13
D || 9.1911107 1.0 13
N || 1.5042107 0.0202 26
Dhr || 7.452710%2 1.0 26

] || without scaling| with scaling | order |

Ny 1.7564108 0.0265 13
Dy 6.623310° 1.0 13
Ny, 4.948610° 0.0265 13
Dy 1.8684108 1.0 13

Table 8: TBO3AD: Maximum absolute value of coefficients ofable 10: TBO3AD: Maximum absolute value of coefficients
the obtained polynomial matrices, and order of the polynomaf the obtained polynomial matrices, and order of the polyno-

als, forH

mials, forV'



