
POLYNOMIAL FACTORIZATION OF LARGE MIMO SYSTEMS
USING SLICOT LIBRARY AND POLYX TOOLBOX

P.-O. Malaterre

Cemagref, 361 rue J.-F. Breton, BP 5095, 34033 Montpellier Cedex 1, France
e-mail: pom@montpellier.cemagref.fr

Keywords: polynomial factorization, Youla parametrization,
`1 control, high-order systems, numerical tools

Abstract

The aim of this note is to present an application of the SLI-
COT Fortran Library and PolyX MatLabc© ToolBox for poly-
nomial factorization of large MIMO systems. The correspond-
ing polynomial matrix fractions have been calculated for the
H, U andV matrix transfer functions coming from the Youla
parametrization of a high order system (an irrigation canal).
TheH (resp.U andV ) matrix transfer function has 5 inputs,
10 outputs and 130 states (resp. 5, 10, 65 forU and 5, 5, 65
for V ). The results proved to be very good in terms of singular
values matching between the original and the factorized sys-
tem (polynomial matrix fraction). Scaling has been introduced,
reducing considerably the size of the polynomial coefficients,
without losing precision for the singular values.

1 Introduction

P

K

wz

uy

Figure 1: Standard framework

In many control design problems, the objective is to find a sta-
bilizing linear time-invariant (LTI) discrete-time controllerK
which, in addition to stabilizing the closed loop system, mini-
mizes some norm(s) of the transfer matrixΦ : w → z (Figure
1). If the considered norm is theH2 orH∞ norm of the trans-
fer matrixΦ in the frequency domain, then a state-space solu-
tion exists for the controller. But in the case of the`1 norm of
the impulse response, no state-space solution exists for the mo-
ment, and the problem must be solved by a linear programming
approach [1]. This can be stated as solving:

γopt = inf
K stabilizing

‖Fl(P, K)‖1 (1)

where P represents the LTI discrete-time generalized plant
(Figure 1),K the LTI discrete-time controller,Fl(P, K) = Φ
the lower linear fractional transformation ofP by K. We as-
sume the dimensions ofw, z, u, andy arenw, nz, nu, and
ny respectively. It can be shown [1], that this problem can be
formulated as that of finding:

γopt = inf
Q∈`

nu×ny
1

‖H − U ∗Q ∗ V ‖1 (2)

where∗ denotes convolution,H ∈ `nz×nw
1 , U ∈ `nz×nu

1 , and
V ∈ `ny×nw

1 are fixed and depend on the problem data:P , nw,
nz, nu, andny.

In order to transform this problem into a Finite Dimensional
Linear Programing problem (FD LP) one solution is to com-
pute Finite Impulse Response (FIR) approximations ofH, U
andV , and to look for the optimalQ with a finite support of
lengthN . It is proved [2], that this approach with one addi-
tional constraint provides converging upper and lower bounds
for the original problem, whenN →∞.

2 Incentive for polynomial factorization

The numerical approach used to solve the previous problem
can lead to a large number of linear constraints in the LP prob-
lem if the FIR approximations ofH, U andV are very long.
Another approach can be to compute a right (resp. left) poly-
nomial factorization ofU (resp. V ): U = Nur.D−1

ur (resp.
V = D−1

vl .Nvl). A similar work can be done withH but will
not be detailed in this note. The original problem is then trans-
formed into:

γopt = inf
Q∈`

nu×ny
1

‖H −Nur ∗D−1
ur ∗Q ∗D−1

vl ∗Nvl‖1 (3)

= infeQ∈`
nu×ny
1

‖H −Nur ∗ ˜Q ∗Nvl‖1 (4)

with ˜Q = D−1
ur ∗Q ∗D−1

vl

Proof: U andV are stable⇒ the λ-Transform ̂Dur and ̂Dvl



without scaling with scaling

from state-space 2.816010−10 2.816010−10

left factorization 9.506410−6 9.120610−6

right factorization 9.589910−9 9.592010−9

Table 1: TB03AD: Maximum difference of singular values to
the ones obtained with the MatLab “Sigma” function, forU

without scaling with scaling order

Nul 1.78941013 0.2767 7
Dul 6.46761013 1.0 7
Nur 5.11591011 0.6223 13
Dur 8.22151011 1.0 13

Table 2: TB03AD: Maximum absolute value of coefficients of
the obtained polynomial matrices, and order of the polynomi-
als, forU

have no unstable zeros⇒ ̂D−1
ur and ̂D−1

vl ∈ `1 (Weiner The-
orem) and thereforeQ ∈ `1 ⇔ ˜Q ∈ `1, which means that
searching over˜Q is equivalent to searching overQ.

3 Computation of the polynomial factorizations

At least two softwares or libraries can compute such polyno-
mial factorizations. The open FORTRAN library SLICOT [3]
proposes the TB03AD routine. The PolyX MatLab Toolbox
[4] proposes the routines ss2lmf and ss2rmf.

In order to use the TB03AD SLICOT routine from MatLab, a
Fortran program (MTB03AD.f) has been written. This source
code has been compiled using the MicroSoft PowerStation 4.0
Fortran compiler, and linked to the SLICOT, LAPACK and
BLAS libraries [3]. This compiled program (MTB03AD.exe)
is then called from a TB03AD.m MatLab function. More re-
cently, we tested another approach, consisting in generating a
.mex file using the Digital Fortran Compiler 6.0. In terms of
computational speed this second approach is 3 to 5 time faster.

In PolyX the routines ss2lmf and ss2rmf are called directly
from MatLab.

In the following sections the two packages are tested on the
same examples.

4 Results of the polynomial factorization ofU

The left and right polynomial factorizationU = D−1
ul .Nul =

Nur.D−1
ur have been computed using the SLICOT TB03AD

subroutine [3]. TheU system has 5 inputs, 10 outputs and
65 states. The order of theNul (resp.Dul, Nur, Dur) matrix
polynomial is 7 (resp. 7, 13, 13). The singular values of the
original system are compared, over a large range of frequen-
cies, to the ones of the left and right polynomial factorizations
(Figure 2, Table 1). The matching is very good (the maximum

without scaling with scaling

from state-space 2.816010−10 2.816010−10

left factorization 2.764410−6 2.972010−6

right factorization 9.865510−9 9.745010−9

Table 3: PolyX: Maximum difference of singular values to the
ones obtained with the MatLab “Sigma” function, forU

deviation is 9.506410−6 for the left factorization). Neverthe-
less, one drawback of this factorization is that the coefficients
of the polynomial matrices are very large in our example (Ta-
ble 2). But this can be easily solved by scaling them (for exam-
ple by dividing all coefficients by an appropriate scalar, which
does not change the condition number of the matrices). The
matching of the singular values is not affected (Table 1), and
the maximum value of the coefficients of the polynomial ma-
trices is greatly reduced (Table 2). This is important if these
coefficients are then used in a Linear Programming software.
It would be probably a good idea to add this scaling option to
both packages.

10
−2

10
−1

10
0

10
1

−10

0

10

20

30

40

50

60
Original system − Sigma MatLab command

Frequency w

S
in

gu
la

r 
va

lu
es

10
−2

10
−1

10
0

10
1

−10

0

10

20

30

40

50

60
Original system − D + C.inv(iw.I − A).B

Frequency w

S
in

gu
la

r 
va

lu
es

10
−2

10
−1

10
0

10
1

−10

0

10

20

30

40

50

60
Left polynomial factorization − inv(Dl)*Nl

Frequency w

S
in

gu
la

r 
va

lu
es

10
−2

10
−1

10
0

10
1

−10

0

10

20

30

40

50

60
Right polynomial factorization − Nr*inv(Dr)

Frequency w

S
in

gu
la

r 
va

lu
es

Figure 2: Comparison of the singular values forU

5 Comparison with the PolyX ToolBox

The results obtained with the SLICOT TB03AD routine are
compared to the ones obtained with the MatLab Polynomial
ToolBox PolyX (Tables 3, 4, 5, 6). These results have been
kindly provided by PolyX, inc [4]. The results are very simi-
lar, as far as the singular values and the maximum polynomial
coefficients are concerned. Except in one case (right factoriza-
tion for U), PolyX gives slightly better results. Also, with both
packages the computation time is about 1 to 2 seconds on a PC
based on a Pentium II, 350 Mhz (and about 0.3 seconds on a
Pentium III, 667 Mhz with the exe file method and about 0.06
seconds with the mex file method).



without scaling with scaling order

Nul 1.75751013 0.2680 7
Dul 6.55841013 1.0 7
Nur 3.20541011 0.4997 13
Dur 6.41401011 1.0 13

Table 4: PolyX: Maximum absolute value of coefficients of the
obtained polynomial matrices, forU

without scaling with scaling

from state-space 8.704110−14 8.704110−14

left factorization 2.966510−13 2.948810−13

right factorization 6.821210−13 6.830110−13

Table 5: PolyX: Maximum difference of singular values to the
ones obtained with the MatLab “Sigma” function, forV

6 Conclusion

The SLICOT TB03AD subroutine proved to be very useful and
numerically efficient, even on large systems. The results are
close to the ones obtained using the PolyX MatLab ToolBox,
although slightly not as good on 3 cases out of 4. But the errors
are very small and far bellow the required precision.

The numerical precision obtained with the SLICOT subrou-
tines proved to be very similar using .mat files and an exter-
nal .exe program compiled with the PowerStation 4.0 Fortran
Compiler compared to using a .mex file compiled with the Dig-
ital Fortran Compiler 6.0. But this latest option proved to be
faster (about 3 to 5 times). Nevertheless this computational
time is very small and if this calculation has to be made from
MatLab, the PolyX is certainly much more convenient. The
SLICOT package has the advantage to be freely available, and
is useful in case the calculation has to be made from a Fortran
Program.

The coefficients of the obtained polynomials proved to be very
large. This is an important problem since these coefficients are
then planned to be used into a Linear Programming software.
But, this could be easily solved using a scaling factor. Neither
the precision of the polynomial factorization nor the condition
number of the matrices have been altered. It would be a good
idea to add this option to both packages.

without scaling with scaling order

Nvl 2.1523108 0.0263 13
Dvl 8.1682109 1.0 13
Nvr 5.6355106 0.0264 13
Dvr 2.1380108 1.0 13

Table 6: PolyX: Maximum absolute value of coefficients of the
obtained polynomial matrices, forV

These polynomial factorizations are used and illustrated in a
companion paper [5].

Acknowledgment

The material presented in this note was studied during my stay
at ISU as a Visiting Scientist. I would like to express deep grat-
itude to Mustafa Khammash who kindly welcomed me in his
research group. I would also like to thank Cemagref, Mont-
pellier, France for its financial support and my colleagues there
that accepted to do part of my share of work during this period.

I also want to thank Vasile Sima, from the Research Institute
for Informatics, Bucharest, for his help in correcting bugs in
the original version of the TB03AD SLICOT routine [3]. I
also want to thank Michael Sebek from PolyX [4], for his help
in showing that this problem could be solved numerically at
the time the bug in the original TB03AD SLICOT routine was
not identified, and proving the quality of the PolyX MatLab
Toolbox.

References

[1] M. A. Dahleh and I. J. Diaz-Bobillo,Control of uncertain
systems: a linear programming approach. Prentice-Hall,
1995.

[2] M. Khammash, “A new approach to the solution of the`1
control problem: the Scaled-Q method,” IEEE Transac-
tion on Automatic Control, vol. 45, pp. 180–187, February
2000.

[3] E. Barth, T. Beelen, P. Benner, C. Benson, R. Byers,
R. Dekeyser, F. Delebecque, M. Denham, F. Dumortier,
A. Emami-Naeini, D.-W. Gu, A. Geurts, S. Hammarling,
G. Van Den Hurk, B. Kgstrm, C. Kliman, M. Konstanti-
nov, D. Kressner, A. Laub, C. Oara, C. Paige, T. Penzl,
P. Petkov, V. Sima, S. Steer, F. Svaricek, M. Vanbe-
gin, P. Van Dooren, S. Van Huffel, A. Varga, M. Ver-
haegen, L. Westin, H. Willemsen, T. Williams, and
X. Hongguo, “The control and systems library SLICOT.”
http://www.win.tue.nl/niconet/NIC2/slicot.html, 2000.

[4] H. Kwakernaak and M. Sebek, “Polynomial toolbox 2.”
PolyX Ltd, Prague, Czech Republic, www.polyx.com,
www.polyx.cz, 2000.

[5] P.-O. Malaterre and M. Khammash, “Comparison of dif-
ferent polynomial factorization approaches as an alterna-
tive to FIR approximation to solve thè1 design problem,”
ECC Porto, Portugal, September 2001.



Appendix 1 - Results forH

10
−4

10
−2

10
0

10
2

−60

−40

−20

0

20

40

60
Original system − Sigma MatLab command

Frequency w

S
in

gu
la

r 
va

lu
es

10
−4

10
−2

10
0

10
2

−60

−40

−20

0

20

40

60
Original system − D + C.inv(iw.I − A).B

Frequency w

S
in

gu
la

r 
va

lu
es

10
−4

10
−2

10
0

10
2

−60

−40

−20

0

20

40

60
Left polynomial factorization − inv(Dl)*Nl

Frequency w

S
in

gu
la

r 
va

lu
es

10
−4

10
−2

10
0

10
2

−60

−40

−20

0

20

40

60
Right polynomial factorization − Nr*inv(Dr)

Frequency w

S
in

gu
la

r 
va

lu
es

Figure 3: Comparison of the singular values forH

without scaling with scaling

from state-space 4.749410−10 4.749410−10

left factorization 2.333410−8 2.334210−8

right factorization 1.274410−8 1.276310−8

Table 7: TB03AD: Maximum difference of singular values to
the ones obtained with the MatLab “Sigma” function, forH

without scaling with scaling order

Nhl 2.5911108 0.0028 13
Dhl 9.19111010 1.0 13
Nhr 1.50421021 0.0202 26
Dhr 7.45271022 1.0 26

Table 8: TB03AD: Maximum absolute value of coefficients of
the obtained polynomial matrices, and order of the polynomi-
als, forH

Appendix 2 - Results forV

10
−2

10
−1

10
0

10
1

−80

−60

−40

−20

0

20
Original system − Sigma MatLab command

Frequency w

S
in

gu
la

r 
va

lu
es

10
−2

10
−1

10
0

10
1

−80

−60

−40

−20

0

20
Original system − D + C.inv(iw.I − A).B

Frequency w

S
in

gu
la

r 
va

lu
es

10
−2

10
−1

10
0

10
1

−80

−60

−40

−20

0

20
Left polynomial factorization − inv(Dl)*Nl

Frequency w

S
in

gu
la

r 
va

lu
es

10
−2

10
−1

10
0

10
1

−80

−60

−40

−20

0

20
Right polynomial factorization − Nr*inv(Dr)

Frequency w

S
in

gu
la

r 
va

lu
es

Figure 4: Comparison of the singular values forV

without scaling with scaling

from state-space 8.704110−14 8.704110−14

left factorization 1.460210−12 1.461910−12

right factorization 1.009010−12 1.003610−12

Table 9: TB03AD: Maximum difference of singular values to
the ones obtained with the MatLab “Sigma” function, forV

without scaling with scaling order

Nvl 1.7564108 0.0265 13
Dvl 6.6233109 1.0 13
Nvr 4.9486106 0.0265 13
Dvr 1.8684108 1.0 13

Table 10: TB03AD: Maximum absolute value of coefficients
of the obtained polynomial matrices, and order of the polyno-
mials, forV


